Telegram Group & Telegram Channel
معرفی Toolformer

مدل‌های زبانی، در حل وظایف جدید با تنها چند مثال یا دستورالعمل متنی توانایی‌های قابل توجهی دارند، به ویژه در مقیاس بزرگ. در عین حال، برای عملکردهای پایه‌ای مثل محاسبات یا جستجوی factها دچار مشکل هستند، جایی که مدل‌های ساده‌تر و کوچک‌تر بسیار عالی عمل می‌کنند. این مقاله با معرفی Toolformer، نشون میده که مدل‌های زبانی چطوری می‌تونند خودشون رو با استفاده از API‌های ساده، آموزش بدن تا بهترین راهکار رو داشته باشند. مدل Toolformer، آموزش میبینه که تصمیم بگیره کدام API رو فراخوانی کنه، چه زمانی اونها رو فراخوانی کنه، چه آرگومان‌هایی رو منتقل کنه و چطوری به بهترین شکل از ترکیب نتایج برای پیش‌بینی توکن بعدی استفاده کنه.

این APIهای گنجانده شده در Toolformer شامل ماشین حساب، سیستم پرسش و پاسخ، موتور جستجو، سیستم ترجمه و یک تقویمه. آموزش این مدل به صورت خودبخودی و خودآموزه، که تنها به چند تا نمونه برای هر API نیاز داره. یعنی با استفاده از تعداد انگشت شماری نمونه‌های نوشته شده توسط انسان از فراخوانی یک API، به مدل این امکان داده میشه که برای یک مجموعه داده‌ی زبانی بزرگ، کاندیدهای فرخوانی API رو مرتبط با محتوای متن ایجاد کند (in-context learning). سپس با استفاده از یک تابع self-supervised loss مشخص میشه کدام فراخوانی‌ APIها واقعا به مدل برای پیش‌بینی توکن بعدی کمک می‌کنه. در نهایت مدل روی فراخوان‌های API ای که مفیدند finetune میشه.

مدل Toolformer، عملکرد zero-shot  رو برای مدل GPT-J با 6.7B پارامتر به طور قابل توجهی بهبود می بخشه و باعث میشه حتی از مدل بسیار بزرگتر GPT-3 در طیف وسیعی از وظایف مختلف پایین‌دستی (یا همان downstream tasks) بهتر عمل کنه، بدون اینکه تواناهایی مدل سازی زبان اصلی را ازدست بده.

لینک مقاله:
https://arxiv.org/abs/2302.04761

پ.ن. این پست را خانم وحیدی درست کردند و به کانال فرستادند. شما هم اگر پست خوبی دارید بگید تا به اسم و با لینک به لینکداین خودتون منتشر کنیم.

#read
#paper

@nlp_stuff



tg-me.com/nlp_stuff/327
Create:
Last Update:

معرفی Toolformer

مدل‌های زبانی، در حل وظایف جدید با تنها چند مثال یا دستورالعمل متنی توانایی‌های قابل توجهی دارند، به ویژه در مقیاس بزرگ. در عین حال، برای عملکردهای پایه‌ای مثل محاسبات یا جستجوی factها دچار مشکل هستند، جایی که مدل‌های ساده‌تر و کوچک‌تر بسیار عالی عمل می‌کنند. این مقاله با معرفی Toolformer، نشون میده که مدل‌های زبانی چطوری می‌تونند خودشون رو با استفاده از API‌های ساده، آموزش بدن تا بهترین راهکار رو داشته باشند. مدل Toolformer، آموزش میبینه که تصمیم بگیره کدام API رو فراخوانی کنه، چه زمانی اونها رو فراخوانی کنه، چه آرگومان‌هایی رو منتقل کنه و چطوری به بهترین شکل از ترکیب نتایج برای پیش‌بینی توکن بعدی استفاده کنه.

این APIهای گنجانده شده در Toolformer شامل ماشین حساب، سیستم پرسش و پاسخ، موتور جستجو، سیستم ترجمه و یک تقویمه. آموزش این مدل به صورت خودبخودی و خودآموزه، که تنها به چند تا نمونه برای هر API نیاز داره. یعنی با استفاده از تعداد انگشت شماری نمونه‌های نوشته شده توسط انسان از فراخوانی یک API، به مدل این امکان داده میشه که برای یک مجموعه داده‌ی زبانی بزرگ، کاندیدهای فرخوانی API رو مرتبط با محتوای متن ایجاد کند (in-context learning). سپس با استفاده از یک تابع self-supervised loss مشخص میشه کدام فراخوانی‌ APIها واقعا به مدل برای پیش‌بینی توکن بعدی کمک می‌کنه. در نهایت مدل روی فراخوان‌های API ای که مفیدند finetune میشه.

مدل Toolformer، عملکرد zero-shot  رو برای مدل GPT-J با 6.7B پارامتر به طور قابل توجهی بهبود می بخشه و باعث میشه حتی از مدل بسیار بزرگتر GPT-3 در طیف وسیعی از وظایف مختلف پایین‌دستی (یا همان downstream tasks) بهتر عمل کنه، بدون اینکه تواناهایی مدل سازی زبان اصلی را ازدست بده.

لینک مقاله:
https://arxiv.org/abs/2302.04761

پ.ن. این پست را خانم وحیدی درست کردند و به کانال فرستادند. شما هم اگر پست خوبی دارید بگید تا به اسم و با لینک به لینکداین خودتون منتشر کنیم.

#read
#paper

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/327

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

NLP stuff from in


Telegram NLP stuff
FROM USA